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Dynamics of nonlinear oscillators with random interactions

J. C. Stiller and G. Radons*
Institut für Theoretische Physik, Universita¨t Kiel, Olshausenstrasse 40, D-24118 Kiel, Germany

~Received 3 October 1997!

We develop a mean field theory for a system of coupled oscillators with random interactions with variable
symmetry. Numerical simulations of the resulting one-dimensional dynamics are in accordance with simula-
tions of theN-oscillator dynamics. We find a transition in dependence on interaction strengthJ and symmetry
parameterh from a dynamically disordered phase to a phase with static disorder, where all oscillators are
frozen in random positions. This transition between the ‘‘paramagnetic’’ phase and the spin glass phase
appears to be of first order and is dynamically characterized by chaos~positive Lyapunov exponents! in the
former case and regular motion~vanishing Lyapunov exponents! in the latter case. The Lyapunov spectrum
shows an interesting symmetry for antisymmetric interaction~h521!. @S1063-651X~98!14608-1#

PACS number~s!: 05.45.1b, 05.70.Fh, 64.60.Ht, 64.60.Cn
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I. INTRODUCTION

Oscillations and interacting oscillating systems are om
present in nature as well as in technical systems. There
systems of coupled oscillators have received much intere
the last years. Synchronization and desynchronization w
investigated for populations of fireflies@1,2#, pacemaker cells
of the heart, and pulsating lasers@3,39#. Oscillations in the
nervous system@5#, which control periodical processes a
running, breathing, and chewing, received particular inter
Recently it was conjectured that synchronization of osci
tions plays a fundamental role in the mammalian brain. T
binding of related features and the separation of unrela
features~binding-problem! could be achieved by synchron
zation and desynchronization of oscillating groups of n
rons @6–8#.

In the presence of dissipation, stable oscillations can o
be generated by active systems, which have a limit cycle
attractor. Based on the idea of a phase description@9#,
‘‘phase models’’ of coupled oscillators have been develop
Kuramoto @10# showed that any system of coupled lim
cycle oscillators can be described in the limit of weak int
action by a set of first order differential equations of t
oscillator phasesf j . These models have been investigat
mostly for uniform all-to-all interactions@10–17,35,42# but
also for other connectivities@19,26#. To address the problem
of interactions of oscillations in the brain, we consider t
most natural choice of interactions, if apart from high co
nectivity no specific information about the interactio
strengths is present: Gaussian random interactions with v
able symmetry described by a symmetry parame
hP@21,1#. For symmetric interactions this kind of syste
was introduced by Daido@18#, who found, for a sufficiently
large average interaction strengthJ, a decay of ‘‘magnetiza-

*Present address: Frauenhofer-Institut fu¨r Produktionstechnik and
Automatisierung~FhG-IPA!, Nobel Strasse 12, D-70569 Stuttga
Germany.
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tion’’ m5(1/N)( j 51
N exp(ifj) according to a power law in

time. Our simulations with identical system size, smal
time discretization, and a numerical procedure of higher
der do not confirm this result. We find a power law only f
a critical interaction strengthJc ; for J.Jc andJ,Jc, we do
find systematic deviations from a power law. AtJc , how-
ever, the system shows a discontinuous transition from
dynamically disordered state to a spin glass state with fro
disorder, in contrast to the case of uniform and V
Hemmen-type@20# interactions where the transition is con
tinuous. In a wider perspective the considered model belo
to the large class of systems characterized by the inter
between frozen disorder and chaos@25,30,31#.

The paper is organized as follows: In Sec. II, we descr
the model in detail. A one-dimensional dynamics, which d
scribes the interacting oscillators in the thermodynamic lim
N→` exactly, is derived with the method of generatin
functionals @21,4# in Sec. III. Following the approach o
Eissfeller and Opper@22# we performed numerical simula
tions of the one-dimensional dynamics~i.e., with N5`) for
asymmetric interactions~h50!, which we compare with
simulations of theN-oscillator dynamics~Sec. IV!. In Sec.
V, we show that the above mentioned transition is charac
ized by the dynamical EA order parameters as forXY spin
glasses@23#. The different phases exist also for other sym
metry parametershÞ1. The part of parameter space (h,J),
which shows spin-glass-like behavior corresponds dyna
cally to regular motion, while it is chaotic~maximal
Lyapunov exponentlmax.0) in the ‘‘paramagnetic’’ case
~Sec. VI!. The Lyapunov spectrum shows an interesti
symmetry for antisymmetric interactions~h521!. Its origin
is different from the one found in recently investigated sy
tems@24#. In Sec. VII, we summarize our results.

II. MODEL

Kuramoto@10# showed that any system of coupled lim
cycle oscillators can be described, in the limit of weak int
action, by a set of differential equations:
1789 © 1998 The American Physical Society
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1790 PRE 58J. C. STILLER AND G. RADONS
ḟ j~ t !5v j1F j„f1~ t !, . . . ,fN~ t !…, ~1!

wheref j (t)P@0,2p) is the phase of thejth oscillator andv j
its natural frequency. The coupling functionF j is 2p peri-
odic in all arguments. Assuming that the interaction can
written as pair interaction,F j can be expanded into a Fourie
series @10#. Keeping only the first terms, one obtains t
simple model equation

ḟ j~ t !5v j1(
i 51

N

Ji j sin„f i~ t !2f j~ t !…. ~2!

This model has mostly been investigated for uniform all-
all interactionsJi j 5K/N @11–17#. In this case, for smal
interaction strength K, all oscillators are complete
ly incoherent, the order parameterm5^exp(if)&
:5(1/N)(j51

N exp(ifj) ~denotedZ in the papers mentione
above! vanishes. Above a critical interaction strengthKc the
system becomes partly coherent (umu.0). At the critical in-
teraction strengthKc the order parameter behaves asumu
;A(K2Kc)/Kc. It has recently been shown that this beha
ior occurs only for odd interaction functions~i.e., truncation
after the first term of the Fourier expansion ofF j ) @27–29#.
For non-odd interaction functionumu scales asumu;(K
2Kc)/Kc . Also, the case of Van Hemmen-type interactio
Ji j 5K/N1C/N(j ih j1j jh i), with j i and h i independent
identically distributed random variables that take values11
and 21 with probability 1

2, has been investi-
gated@20#. Depending on the interaction strengthsK andC,
the system is in an incoherent, a partly coherent, a s
glass-like, or a mixed state. The appropriate order parame
q1ª^j je

if j& and q2ª^j je
if j&, which measure correlation

with the interaction disorder, show up to a constant facto
the same dependence on the interaction strengthC as umu
does onK.

In the following we will analyze the case of Gaussi
random interaction strengthsJi j and random frequenciesv i
with

@Ji j #50,

@Ji j Jkl#5~d ikd j l 1d i l d jkh!J2/N,

@v i #5v0 ,

@v iv j #5m2d i j 1v0
2 .

@•# denotes the quenched average over random frequen
and interaction strengths. Forh51 the interaction is symmet
ric, for h521 it is antisymmetric, and forh50 the random
variablesJi j andJji are uncorrelated. Without loss of gene
ality one can assumev050, which corresponds to the intro
duction of a rotating framef j→f j2v0t.

Interaction of two oscillators

To obtain a first understanding of the dynamics, one
investigate the behavior of two coupled oscillators. In t
case Eq.~2! can be solved by introducing new variabl
Df5f22f1 , f̄5(f21f1), DJ5J122J21, J̄5(J12

1J21)/2, Dv5v22v1 , andv̄5(v21v1)/2. The equations
of motion then read
e

-

-

n-
rs

2

ies

n
s

fG 5v̄1DJ sin~Df!, ~3!

Dḟ5Dv22J̄ sin~Df!. ~4!

The solution of Eq.~4! shows different behavior dependin
on the parameters. For sufficiently strong interaction, i
uDv/2J̄,1u, both oscillators move with a common frequen
and constant phase difference:

lim
t→`

ḟ22ḟ15 lim
t→`

Dḟ50. ~5!

This is calledphase locking. A similar phenomenon also
occurs forN.2 coupled oscillators. This is investigated fo
N→` in the next sections. Foru Dv/2J̄ u.1 both oscillators
move with different averaged frequencies:

^ḟ2& t2^ḟ1& t5^Dḟ& tÞ0. ~6!

This behavior is easily understood: Iff1 andf2 , and hence
alsoDf, are defined on~2`,`!, Eq. ~4! can be regarded a
gradient descent in a potentialV(Df):

Ḋf52
dV~Df!

dDf
, ~7!

with

V~Df!52Dv Df22J̄ cos~Df!. ~8!

The potential functionV(Df) has the form of a tilted cosine
function. ForuDvu,2uJ̄u the potential functionV(Df) has a
local minimum~modulo 2p!. As it is quadratic, the conver
gence to equilibrium is exponentially fast. ForuDvu.2uJ̄u,
in contrast,V(Df) does not have local minima, andDf
grows infinitely.

III. MEAN FIELD LIMIT

Due to the all-to-all interaction in Eq.~2!, the dynamics is
governed by a set of one-dimensional equations in the m
field limit N→`. Following the usual approach of a dy
namic mean field theory@21,22,30,31,4,32#, first a Gaussian
white noisej j (t) is introduced, which transforms Eq.~2! to a
Langevin equation:

ḟ j~ t !5v j1(
i 51

N

Ji j sin@f i~ t !2f j~ t !#1j j~ t !, ~9!

^j j~ t !jk~ t̂ !&5d~ t2 t̂ ! d j ,k s2. ~10!
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Averaged dynamical quantities can be obtained from
generating functional:

@Z#J,v5F E Df~ t !Df̂~ t !

3expH 2
s2

2 (
j
E dt f̂ j~ t !2

2(
j
E dt if̂ j~ t !ḟ j~ t !

1(
j
E dt if̂ j~ t !v j

1(
j ,i

Ji , jE dt if̂ j~ t !

3sin@f i~ t !2f j~ t !#J G
J,v

, ~11!

where *Df(t)5 limt→0P i 51
N P t j

*(2p)21/2df(t j ) denotes

functional integration over all phase variables. SinceJi j and
v j are Gaussian random variables, the average in Eq.~11!
can be calculated~see the Appendix!. The averaged genera
ing functional@Z#J,v factorizes. Hence the dynamics of o
cillators at different sites is independent. Therefore we
omit the site indexi, and write

@Z#J,v5~@Z#J,v
1 !N5S E Ps

df~ ts!df̂~ ts!

2p
e2S1[f,f̂,K,R] D N

.

~12!

The one-dimensional averaged generating functio
@Z#J,v

1 corresponds to a dynamics, which obeys the follo
ing ~generalized! Langevin equation, as can be seen by c
culating the dynamical generating functional of a generali
Langevin equation with multidimensional Gaussian no
~see e.g., Refs.@32# and @33#!:

ḟ~ t !5J Re„eif~ t !z~ t !…1sj3~ t !1mj4~ t !

1h
J2

2 E0

t

d t̃ Re„eif~ t !R1~ t, t̃ !eif~ t̃ !

1eif~ t !R2~ t, t̃ !e2 if~ t̃ !
…, ~13!

with the Gaussian noise variablesj3 ,j4PR andzPC with
zero mean and the correlations

^z~ t !z~ t̃ !&5K1~ t, t̃ !:5^eif~ t !eif~ t̃ !&,

^z* ~ t !z~ t̃ !&5K2~ t, t̃ !:5^e2 if~ t !eif~ t̃ !&,

^j3~ t !j3~ t̃ !&5d t, t̃ , ~14!

^j4~ t !j4~ t̃ !&51,

^j3~ t !j4~ t̃ !&5^j3~ t !n~ t̃ !&5^j4~ t !n~ t̃ !&50,

and the complex response functions
e

n

al
-
l-
d
e

R1~ t, t̃ !5^ i f̂~ t̃ !e2 if~ t !e2 if~ t̃ !&,
~15!

R2~ t, t̃ !5^ i f̂~ t̃ !e2 if~ t !eif~ t̃ !&,

with ^•& denoting the average over the noise variables. T
Gaussian noisej4(t) originates from the different undis
turbed frequenciesv of the oscillators.

IV. NUMERICAL INTEGRATION OF THE
ONE-DIMENSIONAL DYNAMICS

The one-dimensional dynamics~13!, which describes the
system of coupled oscillators in the thermodynamic limitN
→`, is integrated numerically following an approach dev
oped in Ref.@22#. The procedure consists of simulating
large numberM of one-dimensional trajectories in order
calculate the averages~14!. Since the individual trajectories
are statistically independent, the statistical error is expec
to be of orderM 21/2 in contrast to aN-particle simulation of
Eq. ~9! which may show finite-size effects of unpredictab
size @22#.

For h50 and s50 we investigate the decay of th
magnetization mx5^cosf&, my5^sinf& and the corre-
lation functions Kcc(t, t̂ )5^cosf(t)cosf(t̂)&, Kss(s,t)
5^sinf(t)sinf(t̂)&, andKsc5^sinf(t)cosf(t̂)& from the de-
terministic initial conditionf50 ~i.e. m51). The complex
order parameterm5mx1 imy , the magnetization forXY
spins, is equivalent to the order parameter calledZ by Kura-
moto @10#. These initial conditions implymx(t)5Kcc(0,t).
Since in both cases the integrations are carried out num
cally, the results correspond to very small noise rather t
zero noise. Thus we cannot observe unstable dynamica
havior, which may be present fors exactly zero. Corre-
spondingly, simulations with very smalls510212!1/M do

FIG. 1. Comparison of the magnetizationmx(t) of the simula-
tion of the N-particle system~symbols! and the effective one-
particle system~lines! for J55, 15, 25, and 35. For short time
the agreement is very good; for larger times the fluctuations du
the finite size becomes apparent in the direct simulation.



y

th
th

th

l
.

ni

-

ngle
er

an-

der

der
-

ated

ase
he

are
re
eri-
ery
the

-
n

-
nc
g

1792 PRE 58J. C. STILLER AND G. RADONS
not show significant deviations from simulations withs50.
As an example, in Fig. 1 the results forM5105 and time
discretizationt50.005 are compared to results obtained b
direct simulation of Eq.~9! with N5500 oscillators. For
short times we find very good agreement; for larger times
fluctuations due to the finite size becomes apparent in
direct simulation.

For short times the frequency term is dominant since
interaction terms vanish form51. ForJ50 m(t) is the Fou-
rier transform of the frequency distributiong(v), and hence
a Gaussian. ForJ.0 the decay ofm obeys an exponentia
law after the short intermediate period, as is shown in Fig
for different interaction strengthsJ. The coincidence with the
exponential fits is very good for about two orders of mag
tude. We measured the exponenta of the exponential decay
for J55 – 50. For large interaction strength,J shows the ex-
pected dependencea;J. In the case ofJ→` the different
frequencies are negligible, and a transformation ofJ→sJ
corresponds to a time scalingt→t/s, hence the exponenta is
proportional toJ. The slope of the extrapolating line isa`

50.47860.02. In the case ofJ→` the magnetization de
cays asm(t);e20.478t J.

V. PHASE LOCKING FOR SYMMETRIC INTERACTION

In the caseh51, we can identify a constant of motion:

~16!

FIG. 2. Magnetizationmx(t) depending ont for different inter-
action strengthsJ and for h50, obtained from the effective one
particle system and fitted exponential functions. The coincide
with the exponential fits is very good for about two orders of ma
nitude.
a

e
e

e

2

-

The average angular velocity and hence the average a
f̄ª(1/N)( jf j is independent of the dynamics of the oth
degrees of freedom.f̄2v̄t is a constant of motion.

This constant of motion suggests the introduction of qu
tities in a rotating frame, i.e.,f→f̃5f2v̄t. A freezing of
oscillators in random position can be described by the or
parameters

q̃x5 lim
t→`

lim
N→`

^cos„f̃ i~ t0!…cos„f̃ i~ t01t !…&

5 lim
t→`

lim
N→`

^cos„f i~ t0!2v̄t0…cos„f i~ t01t !2v̄~ t01t !…&,

~17!

q̃y5 lim
t→`

lim
N→`

^sin„f̃ i~ t0!…sin„f̃ i~ t01t !…

5 lim
t→`

lim
N→`

^sin„f i~ t0!2v̄t0…sin„f i~ t01t !2v̄~ t01t !…&

~18!

m̃x5^cos„f̃ i~ t !…&5^cos„f i~ t !2v̄t…&, ~19!

m̃y5^sin„f̃ i~ t !…&5^sin„f i~ t !2v̄t…&. ~20!

Here ^•& denotes the average over all oscillators. The or
parametersq̃x and q̃y are equivalent to the dynamical Ed
wards Anderson order parameters forXY spins ~see, e.g.,
Ref. @37#!.

The order parameter

q̃ªq̃x1q̃y, ~21!

is invariant under rotation of all oscillators.q̃50 implies the
absence of spin glass order. This quantity can be calcul
directly from the correlation function

K̃2~ t, t̂ !5^e2 i „f~ t !2v̄t…ei „f~ t̂ !2v̄ t̂…& ~22!

as

q̃5 lim
t→`

lim
N→`

Re K̃2~ t0 ,t01t !. ~23!

The order parameterq̃P@0,1# vanishes, if all correlations
between different oscillators decay, it equals 1 if the ph
differences between different oscillators are constant. T
absolute value of the order parameterm̃5m̃x1 im̃y vanishes
if there is no remanent magnetization, i.e., all phases
equally frequent. It is 1 if the phases of all oscillators a
equal. As the calculation of the response functions is num
cally very expensive and phase locking only occurs for v
large times inaccessible to a numerical integration of
one-dimensional dynamics, we directly simulate Eq.~9! with
the Heun method~see, e.g., Ref.@34#!.

We calculateK̃2(T,t1T) for N5100, 200, and 400
oscillators over a time oft51000 after the system has re
laxed. Figure 3 showsq̃ depending on the interactio
strengthJ for N5100, 200, and 400. The transition from

e
-
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q̃'0 for J,Jc to q̃'1 for J.Jc becomes sharper with
growing system sizeN. BetweenJ524 and 24.3,q̃ changes
from 0.046 to 0.982. This calculation was carried out with
different interaction matrices; the results are the same a
Fig. 3, but the critical interaction strength varied slightly.

A. Decay of magnetization

The numerical calculation shows no remanent magnet
tion m. There is no significant difference between simu
tions started with initial conditionm(0)51 and random ini-
tial phasesf i(0) @magnetizationm(0)50].

We investigate the decay ofmx(t)5^cosf(t)& for an ini-
tial conditionmx(0)51. For this case, Daido@18# found an
exponential decay of the magnetization for 0.7,mx,0.07
and for interaction strengthJ,Jc56.5 ~for N51000), while
for J.Jc it obeyed a power law.

Our simulations, with identical system size, smaller tim
discretization (1023 vs 1022), and a numerical procedure o
higher order, do not confirm this result. An evaluation
integration procedures of different order and different tim

FIG. 4. Dependence of the largest Lyapunov exponentl on the
time step Dt for Euler ~dashed curve! and Heun integration
schemes. The Euler integration scheme withDt51022 as used by
Daido shows strong discretization effects.

FIG. 3. Order parameterq̃ depending on the interaction streng

J for N5100, 200, and 400 oscillators. The transition fromq̃

'0 for J,Jc to q̃'1 for J.Jc becomes sharper with growin

system sizeN. BetweenJ524 and 24.3, the order parameterq̃
changes from 0.046 to 0.982.
in

a-
-

f

steps yields that the Euler integration scheme withDt
51022 as used by Daido shows strong discretization effe
~see Fig. 4!. Our results are shown in Fig. 5. Only forJ
5Jc does the magnetizationmx obey a power lawmx(t)
;ta. The exponent is determined from a fit in the log-lo
plot asa51.0160.02. While forJ,Jc we can confirm the
exponential decay of the magnetization as found in Ref.@18#,
the behavior forJ.Jc appears to be more complex. In th
region we find strong fluctuations around a pure power la
Although this result is not in contradiction to the existence
a glassy phase, a definite answer to the question of
asymptotic behavior of the magnetization would requ
simulations with much larger system sizes.

B. Almost symmetric interaction matrix

Numerical investigations for almost symmetric interacti
matrices show that phase locking can also occur forh,0
above a critical interaction strengthJc(h). In numerical ex-
periments, one has to work with a finite time discretizationt.
We observe an intermittency phenomenon, which does
occur forh50 and strongly depends ont. After a timet regular
the regular motion breaks down, but after a short time
recovers again~see Fig. 6!. Note thatuK2(T,T1t)u grows to
1 again, hence the oscillators approachthe same configura-

FIG. 5. Doubly logarithmic plot of the magnetizationmx for J
50, 10, 15, 24, 30, and 40. Only forJ5Jc does the magneti-
zationmx obey a power lawmx(t);ta.

FIG. 6. Re K2(T,T1t) for T51000 andDt50.01 ~top! or
0.005 ~bottom! andJ530 andh50.9. The intermittency phenom
enon is strongly dependent on the time discretizationDt.
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1794 PRE 58J. C. STILLER AND G. RADONS
tion as before the breakdown. This gives rise to the specula
tion, that the system forh51 finds a minimum of the energ
landscape.

The strong dependence of the intervals between bre
downst regular of the regular motion ont is shown in Fig. 7.
We conjecture thatt regular diverges fort→0.

The critical interaction strengthJc(h) is strongly depen-
dent onh. With the growth of the asymmetric portion of th
interaction matrix,Jc(h) becomes larger. Forh,0.8, freez-
ing of oscillators does not occur. This result corresponds
numerical results of Kinzel and Spitzner@36#, who found
spin glass order in the SK model with Ising spins forh.0.83
60.02.

Our results are summarized in Fig. 8. AboveJc(h) the
oscillators are frozen in random positions like spins in a s
glass. This part of phase space is denoted by SG. The o
parameterq̃ is 1, and the magnetizationm vanishes. For
J<Jc(h) ~denoted ‘‘paramagnetic’’ in Fig. 8!, both q̃ andm

FIG. 8. Value of the largest Lyapunov exponentlmax depending
on the symmetry parameterh and interaction strengthJ represented
by contour lines at levelslmax55, 10, 20, 30, 40, 50, 60, and 7
(N5100). This graph is obtained for one fixed disorder realizat
of the frequencies and couplings by varyingJ andh @see Eq.~A7!#.
In order to suppress the~rather small! sample to sample fluctua
tions, we averaged over three disorder realizations. The part o
parameter space (h,J) aboveJc(h) ~bold line!, where the oscilla-
tors freeze in random positions, is denoted by ‘‘SG.’’ In this regim
lmax50. For h,0.8 there is no spin glass order. The large
Lyapunov exponent decreases monotonically withh and, forh,0.8
grows monotonically withJ.

FIG. 7. The dependence of the duration of regular motiont regular

on the time discretizationDt suggests thatt regular diverges to infin-
ity for Dt→0. Plotted is (t regular)

21 againstDt.
k-

to

n
er
vanish. The motion of the oscillators is completely incoh
ent.

VI. DYNAMIC PROPERTIES

To investigate the dynamic properties, the Lyapun
spectra are calculated for different interaction strengthsJ and
symmetry parametersh. These numerical results suggest th
the Lyapunov exponents are dense in the limitN→`. There
is no hint of a discrete component, as was reported by fo
system of coupled oscillators with phase and amplitude v
ables@37#.

Our numerical investigations show that forh521 the
Lyapunov spectrum is symmetric. This is not only valid
the thermodynamic limitN→`, but also for smallN, e.g.,
N54. The symmetry can be quantified by symmetry valu
si ªlN/21 i2lN/22 i 21 , (i 50, . . . ,N/221 Neven) calcu-
lated from the ordered spectrum of Lyapunov exponentsl i .
Only for antisymmetric interaction matrix~h521! do we
find si50 ~up to numerical inaccuracies!. The symmetry also
holds for oddN, but with one unpaired zero Lyapunov ex
ponent. For symmetry parameterhÞ21 we do find system-
atic deviations fromsi5const. This is shown for three ex
amples in Fig. 9.

One can easily understand that the sum of all Lyapun
exponents must vanish forh521, since the local contraction
rate of the phase space volume, the divergence, vanishe

divF~f!5(
j 51

N
]F j

]f j
5(

j 51

N

(
l 51

N

Jl j cos~f j2f l !

5(
j 51

N

(
l 51

j 21

~Jl j 1Jjl !cos~f j2f l !50. ~24!

n

he

t

FIG. 9. Symmetry values si5lN/21 i2lN/22 i 21 for i
50, . . . ,49calculated from the ordered spectrum of Lyapunov e
ponentsl i of N5100 oscillators (J510). Only for h521 is the
Lyapunov spectrum symmetric.



c
op
e

av
m
tr

en
e
x
ch

le
bl

th

dy
-

a
uc

n
n
th

e

co

ul

ced

ch

c-

ed
be
ed

the
is
:

PRE 58 1795DYNAMICS OF NONLINEAR OSCILLATORS WITH . . .
In contrast to the conservation of volume in phase spa
we find the symmetry of the spectrum is no short time pr
erty. Differing from Hamiltonian systems, where the symm
try is a short time property, the Jacobi matrix does not h
a symplectic structure. In recent publications other syste
were described which show symmetric Lyapunov spec
@38,39,40,41#. A criterion developed in Ref.@24# for the oc-
currence of a symmetric Lyapunov spectrum, which is a g
eralization of the infinitesimal symplectic condition for th
Jacobian, is not fulfilled here, since the short time appro
mation of the Lyapunov spectrum is not symmetric, whi
would be required.

VII. CONCLUSION

We developed a mean field theory for a system of coup
oscillators with Gaussian random interactions with varia
symmetry. With the method of generating functionals@21,4#,
we derived a one-dimensional dynamics which describes
interacting oscillators in the thermodynamic limitN→` ex-
actly. The numerical simulations of the one-dimensional
namics corresponding toN→` and for asymmetric interac
tions conform with simulations of theN-oscillator dynamics.
The exponential decrease of the correlation functions can
verified for almost two orders of magnitude, as the fluctu
tions due to a finite number of simulated paths are m
smaller than for a simulation of theN-oscillator dynamics
~for the same amount of computer memory used!.

For symmetric interaction we find a transition from a
incoherent state to a state where all oscillators are froze
random positions like spins in a spin glass depending on
interaction strengthJ. It is discontinuous, in contrast to th
case of uniform interactions~Kuramoto model!, where there
is a continuous transition from an incoherent to a partly
herent state@10#.
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APPENDIX: DERIVATION OF THE MEAN FIELD
DYNAMICS

The effective one-dimensional dynamics can be dedu
in the following way.

~i! Calculation of the generating functionalZ.
~ii ! Calculation of the quenched average ofZ over random

frequencies and random interactions.
~iii ! Writing the exponent@Z#v,J in a form with squares of

sums oflocal quantities.
~iv! Linearization of the exponent of@Z#v,J in these sums

of local quantities with a functional Hubbard-Stratonovi
transformation~HST!.

~v! Coordinate transformation inQa(t).
~vi! Performing the integrations overQ̂a(t, t̂ ) with the

method of steepest descent.
~vii ! Gathering the one-dimensional dynamics from fa

torizing @Z#v,J .
As the effective one-dimensional dynamics will be solv

numerically, and the equation in the Ito interpretation can
integrated much more easily, we start with a discretiz
equation in the Ito interpretation. The generalization to
Stratonovich interpretation and the continuous time limit
straightforward. The discretized Langevin equation reads

f j~ ts11!5f j~ t l !1v jt

1t(
i

Ji , jsin„f i~ ts!2f j~ ts!…1j j~ ts11!,

~A1!

with Gaussian noisêj j (ts)j j (t ŝ)&5ds,ŝ d i , j s2t. The gen-
erating functionalZ is
Z5E PsPk

dfk~ ts!df̂k~ ts!

2p
expH 2

s2

2 (
s, j

tf̂ j
2~ ts!2(

s, j
t i f̂ j~ ts!

f j~ ts!2f j~ ts21!

t

1(
s, j

t i f̂ j~ ts!v j1(
s, j

t i f̂ j~ ts!(
k

Jk, jsin„fk~ ts21!2f j~ ts21!…J . ~A2!

First Z is averaged over the random frequencies, which obeyp(v i)5 (1/A2pm) e2 (v i
2/2m2). We find

FexpS (
j

dt îf j~ t !v j D G
v

5P jE dv j p~v j !expS v j(
s

t i f̂ j~ t ! D
5P jE dv j

1

A2pm
expS 2

v i
2

2m2
1v j(

s
t i f̂ j~ t !D

5P jexpS m2

2 F(
s

t i f̂ j~ t !G2D ~A3!

5expH 2
m2

2 (
j

(
s

t(
s̃

t f̂ j~ ts!f̂ j~ t s̃!J . ~A4!
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A non-Gaussian distribution functionp(v i) would lead to higher powers off̂ j in the exponent:

@Z#v5E PsPk

dfk~ ts!df̂k~ ts!

2p
expH 2S̃01(

s
t(

k, j
i f̂ j~ ts!Jk, jsin„fk~ ts21!2f j~ ts21!…J , ~A5!

with the Jk j-independent term

S̃05(
j

s2

2 (
s

tf̂ j
2~ ts!1(

s
t i f̂ j~ ts!

f j~ ts!2f j~ ts21!

t
1

m2

2 (
s,s̃

t2f̂ j~ ts!f̂ j~ t s̃!. ~A6!

S̃0 is a sum of one particle terms. The interaction matrixJi j can be written as sum of a symmetric matrix and an antisymme
matrix:

Ji j 5
A11h

A2
Ji j

~s!1
A12h

A2
Ji j

~as!

with ~A7!

Ji j
~s!5Jji

~s! and Ji j
(as!52Jji

~as! .

Hence@Z#v can be written as

@Z#v5E PsPk

dfk~ ts!df̂k~ ts!

2p
expH 2S̃01(

s
t (

j ,k, j

A11h

A2
Jk, j

~s!
„i f̂ j~ ts!2 i f̂k~ ts!…sin„fk~ ts21!2f j~ ts21!…

1„i f̂ j~ ts!1 i f̂k~ ts!…
A12h

A2
Jk, j

~as!sin„fk~ ts21!2f j~ ts21!…J . ~A8!

The average overJk j can now be carried out asN(N21) Gaussian integrations:

@Z#v,J5E PsPk

dfk~ ts!df̂k~ ts!

2p
expH 2S̃01

J2

4N S (
j ,k

11h

2 (
s,s̃

t2
„i f̂ j~ ts!2 i f̂k~ ts!…„i f̂ j~ t s̃!2 i f̂k~ t s̃!…

3sin„fk~ ts21!2f j~ ts21!…sin„fk~ t s̃21!2f j~ t s̃21!…1(
j ,k

12h

2 (
s,s̃

t2
„i f̂ j~ ts!1 i f̂k~ ts!…„i f̂ j~ t s̃!1 i f̂k~ t s̃!…

3sin„fk~ ts21!2f j~ ts21!)sin„fk~ t s̃21!2f j~ t s̃21!…D J ~A9!

5E PsPk

dfk~ ts!df̂k~ ts!

2p
expH 2S̃01

J2

2N(
s,s̃

t2(
j ,k

„i f̂ j~ ts!i f̂ j~ t s̃!1 i f̂k~ ts!i f̂k~ t s̃!

2h i f̂ j (ts) i f̂k(t s̃)2h i f̂k(ts) i f̂ j (t s̃)…sin„fk(ts21)2f j (ts21)…sin„fk(t s̃21)2f j (t s̃21)…J . ~A10!
With the definitions

K̃cc~ ts ,t s̃!5
1

N(
j

cosf j~ ts21!cosf j~ t s̃21!, ~A11!

K̃ss~ ts ,t s̃!5
1

N(
j

sinf j~ ts21!sinf j~ t s̃21!, ~A12!
K̃sc~ ts ,t s̃!5
1

N(
j

sinf j~ ts21!cosf j~ t s̃21!, ~A13!

R̃cc~ ts ,t s̃!5
1

N(
j

i f̂ j~ t s̃!cosf j~ ts21!cosf j~ t s̃21!,

~A14!
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R̃ss~ ts ,t s̃!5
1

N(
j

i f̂ j~ t s̃!sinf j~ ts21!sinf j~ t s̃21!,

~A15!

R̃sc~ ts ,t s̃!5
1

N(
j

i f̂ j~ t s̃!sinf j~ ts21!cosf j~ t s̃21!,

~A16!

R̃cs~ ts ,t s̃!5
1

N(
j

i f̂ j~ t s̃!cosf j~ ts21!sinf j~ t s̃21!,

~A17!

Ũcc~ ts ,t s̃!5
1

N(
j

i f̂ j~ ts!i f̂ j~ t s̃!cosf j~ ts21!cosf j~ t s̃21!,

~A18!

Ũss~ ts ,t s̃!5
1

N(
j

i f̂ j~ ts!i f̂ j~ t s̃!sinf j~ ts21!sinf j~ t s̃21!,

~A19!
ds
Ũcs~ ts ,t s̃!5
1

N(
j

i f̂ j~ ts!i f̂ j~ t s̃!cosf j~ ts21!sinf j~ t s̃21!,

~A20!

one can write the generating functional as

@Z#v,J5E PsPk

dfk~ ts!df̂k~ ts!

2p

3expH 2S̃01
J2

2N(
s,s̃

t2Ũcc~ ts ,t s̃!K̃ss~ ts ,t s̃!

1Ũss~ ts ,t s̃!K̃cc~ ts ,t s̃!22Ũcs~ ts ,t s̃!K̃sc~ ts ,t s̃!

22hR̃cc~ ts ,t s̃!R̃ss~ ts ,t s̃!12hR̃sc~ ts ,t s̃!R̃cs~ ts ,t s̃!.

~A21!

These terms can be written as squares using 4ab5(a1b)2

2(a2b)2:
@Z#v,J5E PsPk

dfk~ ts!df̂k~ ts!

2p
expH 2S̃01

J2

2N(
s,s̃

t2
1

4
„Ũcc~ ts ,t s̃!1R̃ss~ ts ,t s̃!…

22„Ũcc~ ts ,t s̃!2R̃ss~ ts ,t s̃!…
2

1„Ũss~ ts ,t s̃!1K̃cc~ ts ,t s̃!…
22„Ũss~ ts ,t s̃!2K̃cc~ ts ,t s̃!…

222„Ũcs~ ts ,t s̃!1K̃sc~ ts ,t s̃!…
2

12„Ũcs~ ts ,t s̃!2K̃sc~ ts ,t s̃!…
222h„R̃cc~ ts ,t s̃!1R̃ss~ ts ,t s̃!…

212h„R̃cc~ ts ,t s̃!

2R̃ss~ ts ,t s̃!…
212h„Ũcs~ ts ,t s̃!1K̃sc~ ts ,t s̃!…

222h„Ũcs~ ts ,t s̃!2K̃sc~ ts ,t s̃!…
2J . ~A22!
Linearization of the exponents with a functional HST yiel

@Z#v,J5E PsPk

dfk~ ts!df̂k~ ts!

2p E DQa~ ts ,t s̃!

3expH 2S̃01(
s,s̃

t2
24N

J2 (
a

Qa
2~ ts ,t s̃!

1Q1~ ts ,t s̃!„Ũcc~ ts ,t s̃!1R̃ss~ ts ,t s̃!…

A

2A2hQ8~ ts ,t s̃!„Ũcs~ ts ,t s̃!2K̃sc~ ts ,t s̃!…J .

~A23!
A linear coordinate transformation inQa is carried out

Q̃aªQa1 iQa11

Q̃a11ªQa2 iQa11J for a51,3,5,9,

~A24!

Q̃a:5 iQa1Qa11

Q̃a11:5 iQa2Qa11J for a57.

@Z#v,J can be written as

@Z#v,J5E PsPk

dfk~ ts!df̂k~ ts!

2p

3E DQ̃a~ ts ,t s̃!e
2S[ $f j %,$f̂ j %,Q̃a] ~A25!

with
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S@$f j%,$f̂ j%,Q̃a#

51S̃02H (
s,s̃

t2
22N

J2 (
aP$1,3,5,9%

Q̃aQ̃a112Q̃7Q̃8

1Q̃1~ ts ,t s̃!Ũcc~ ts ,t s̃!1Q̃2~ ts ,t s̃!K̃ss~ ts ,t s̃!

1Q̃3~ ts ,t s̃!Ũss~ ts ,t s̃!1Q̃4~ ts ,t s̃!K̃cc~ ts ,t s̃!

1A2Q̃5~ ts ,t s̃!Ũcs~ ts ,t s̃!1A2Q̃6~ ts ,t s̃!K̃sc~ ts ,t s̃!

1A2hQ̃7~ ts ,t s̃!R̃cc~ ts ,t s̃!1A2hQ̃8~ ts ,t s̃!R̃ss~ ts ,t s̃!

1A2hQ̃9~ ts ,t s̃!R̃cs~ ts ,t s̃!1A2hQ̃10~ ts ,t s̃!R̃sc~ ts ,t s̃!J .

~A26!

The integrals overQ̃a are evaluated by the method o
steepest descent. In the limitN→` one obtains the exac
saddle point equations

Q̃1
0~ ts ,t s̃!5

J2

2
^K̃ss~ ts ,t s̃!&, ~A27!
Q̃2
0~ ts ,t s̃!5

J2

2
^Ũcc~ ts ,t s̃!&,

Q̃3
0~ ts ,t s̃!5

J2

2
^K̃cc~ ts ,t s̃!&,

Q̃4
0~ ts ,t s̃!5

J2

2
^Ũss~ ts ,t s̃!&,

Q̃5
0~ ts ,t s̃!52A2

J2

2
^K̃sc~ ts ,t s̃!&,

Q̃6
0~ ts ,t s̃!52A2

J2

2
^Ũcs~ ts ,t s̃!&,

Q̃7
0~ ts ,t s̃!52A2h

J2

2
^R̃ss~ ts ,t s̃!&,

Q̃8
0~ ts ,t s̃!52A2h

J2

2
^R̃cc~ ts ,t s̃!&,

Q̃9
0~ ts ,t s̃!5A2h

J2

2
^R̃sc~ ts ,t s̃!&,

Q̃10
0 ~ ts ,t s̃!5A2h

J2

2
^R̃cs~ ts ,t s̃!&.

The averages on the right-hand side of Eq.~A27! are defined
as
s:
^ f ~f,f̂ !&5

E PsPk

dfk~ ts!df̂k~ ts!

2p
f ~f,f̂ !e2S[ $f j %,$f̂ j %,Q̃a]

E PsPk

dfk~ ts!df̂k~ ts!

2p
,e2S[ $f j %,$f̂ j %Q̃a]

. ~A28!

The exponentS@$f j%,$f̂ j%,Q̃a# now contains the stationary values ofQ̃a . It factorizes into a single sum of local quantitie

S@$f j%,$f̂ j%,Q̃a#5(
j

S1@f j ,f̂ j ,Q̃a#5@Z#v,J ~A29!

can be written as

@Z#v,J5P i 51
N @Z#v,J

1 5~@Z#v,J
1 !N. ~A30!

As @Z#v,J is a power of@Z#v,J
1 , it describes a system ofN identical, noninteracting particles. Therefore the average^•& can be

considered as one-particle average. From now on we drop the site index:

@Z#J
15E Ps

df~ ts!df̂~ ts!

2p
e2S1[f,f̂,K,R,U] , ~A31!

with
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2S1@f,f̂,K,R,U#5
s2

2 (
s

tf̂2~ ts!1(
s

t i f̂~ ts!
f~ ts!2f~ ts21!

t
1

m2

2 (
s,s̃

t2 f̂~ ts!f̂~ t s̃!

1(
s,s̃

t2
J2

2
i f̂~ ts!i f̂~ t s̃!@cosf~ ts21!cosf~ t s̃21!Kss~ ts ,t s̃!sinf~ ts21!sinf~ t s̃21!Kcc~ ts ,t s̃!

22 cosf~ ts21!sinf~ t s̃21!Ksc~ ts ,t s̃!#

1(
s

t hJ2i f̂~ ts!(
s̃

t@2cosf~ ts21!cosf~ t s̃21!Rss~ ts ,t s̃!2sinf~ ts21!sinf~ t s̃21!Rcc~ ts ,t s̃!

1cosf~ ts21!sinf~ t s̃21!Rsc~ ts ,t s̃!1sinf~ ts21!cosf~ t s̃21!Rcs~ ts ,t s̃!#

1(
s,s̃

t2
J2

2
@cosf~ ts21!cosf~ t s̃21!Uss~ ts ,t s̃!1sinf~ ts21!sinf~ t s̃21!Ucc~ ts ,t s̃!

22 cosf~ ts21!sinf~ t s̃21!Usc~ ts ,t s̃!#, ~A32!

where the correlation functions and response functions are

Kss~ ts ,t s̃!5^K̃ss~ ts ,t s̃!&5^sinf~ ts21!sinf~ t s̃21!& ~A33!

and analogical. The response functions obeyR(ts ,t s̃)50 for ts<t s̃ . Uss, Usc , andUcc vanish, because, for allts and t s̃ ,
either ts or t s̃ is larger thants21 and ts̃21 . A nonvanishingU would violate causality. The one-dimensional averag
generating functional@Z#J,v

1 corresponds to a dynamics, which obeys the generalized Langevin equation~13! with multidi-
mensional Gaussian noise~14!.
M

.

ce

ev

o

ys.

ys.

s

ys.
@1# J. Buck and E. Buck, Sci. Am.234, 74 ~1976!.
@2# J. Buck,The Quarterly Review of Biology~Stony Brook Foun-

dation, Stony Brook, 1988!, Vol. 3, p. 63.
@3# K. Otsuka, Phys. Rev. Lett.67, 1090~1991!.
@4# H. Sompolinsky and A. Zippelius, Phys. Rev. B25, 6860

~1982!.
@5# R. R. Llinás, Science242, 4885~1988!.
@6# S. L. Bressler, Trends Neurosci.13, 161 ~1990!.
@7# R. Eckhorn, R. Bauer, W. Jordan, M. Brosch, W. Kruse,

Munk, and H. J. Reitboeck, Biol. Cybern.60, 121 ~1988!.
@8# A. K. Engel, P. König, C. M. Gray, and W. Singer, Eur. J

Neurosci.2, 588 ~1990!.
@9# A. T. Winfree, J. Theor. Biol.16, 15 ~1967!.

@10# Y. Kuramoto,Chemical Oscillations, Waves and Turbulen
~Springer, Berlin, 1984!.

@11# H. Daido, J. Phys. A20, L629 ~1987!.
@12# Y. Kuramoto and I. Nishikawa, J. Stat. Phys.49, 569 ~1987!.
@13# Y. Kuramoto, Prog. Theor. Phys. Suppl.79, 223 ~1984!.
@14# Y. Kuramoto and H. Sakaguchi, Prog. Theor. Phys.76, 576

~1986!.
@15# S. H. Strogatz and E. Mirollo, J. Stat. Phys.63, 613 ~1992!.
@16# S. H. Strogatz, E. Mirollo, and P. C. Matthews, Phys. R

Lett. 68, 2730~1992!.
@17# W. F. Wreszinski and J. L. van Hemmen, J. Stat. Phys.72, 145

~1993!.
@18# H. Daido, Phys. Rev. Lett.68, 1073~1992!.
@19# H. Sakaguchi, S. Shinomoto, and Y. Kuramoto, Prog. The

Phys.77, 1005~1987!.
@20# L. L. Bonilla, C. J. Vicente, and J. M. Rubi, J. Stat. Phys.70,

921 ~1993!.
@21# C. De Dominics, Phys. Rev. B18, 4913~1978!.
.

.

r.

@22# H. Eissfeller and M. Opper, Phys. Rev. Lett.68, 2094~1992!.
@23# G. Toulouse and M. Gabay, J. Phys. C42, L103 ~1981!.
@24# D. Gupalo, A. Kaganovich, and E. G. D. Cohen, J. Stat. Ph

74, 1145~1994!.
@25# G. Radons, Phys. Rev. Lett.77, 4748~1996!.
@26# E. Niebur, H. G. Schuster, D. M. Kammen, and C. Koch, Ph

Rev. A 44, 6895~1991!.
@27# J. Crawford, Phys. Rev. Lett.74, 4341~1995!.
@28# H. Daido, Phys. Rev. Lett.73, 4341~1994!.
@29# H. Daido, Physica D91, 24 ~1996!.
@30# N. Molgedey and H. G. Schuster, Phys. Rev. Lett.72, 3638

~1992!.
@31# D. Hansel and H. Sompolinsky, Phys. Rev. Lett.71, 2710

~1993!.
@32# R. L. Stratonovich, inNoise in Nonlinear Dynamical System,

edited by F. Moss and P. V. E. McClintock~Cambridge Uni-
versity Press, Cambridge, 1989!.

@33# J. C. Stiller, Diploma thesis, Kiel University, 1994.
@34# J. Honerkamp,Stochastische Dynamische Systeme~VCH,

Weinheim, 1982!.
@35# S. H. Strogatz and E. Steward, Sci. Am.269, 102 ~1993!.
@36# P. Spitzner and W. Kinzel, Z. Phys. B77, 511 ~1989!.
@37# N. Nakagawa and Y. Kuramoto, Physica D80, 307 ~1994!.
@38# D. Evans, E. G. D. Cohen, and G. P. Morris, Phys. Rev. A42,

5990 ~1990!.
@39# K. Wiesenfeld, C. Bracikowski, G. James, and R. Roy, Ph

Rev. Lett.65, 1749~1990!.
@40# S. Sarmann, D. Evans, and G. P. Morris, Phys. Rev. A45,

2233 ~1992!.
@41# G. P. Morris, Phys. Rev. A37, 2118~1988!.
@42# J. C. Stiller and G. Radons~unpublished!.


